Dissecting Regulatory Networks of Filopodia Formation in a Drosophila Growth Cone Model

نویسندگان

  • Catarina Gonçalves-Pimentel
  • Rita Gombos
  • József Mihály
  • Natalia Sánchez-Soriano
  • Andreas Prokop
چکیده

F-actin networks are important structural determinants of cell shape and morphogenesis. They are regulated through a number of actin-binding proteins. The function of many of these proteins is well understood, but very little is known about how they cooperate and integrate their activities in cellular contexts. Here, we have focussed on the cellular roles of actin regulators in controlling filopodial dynamics. Filopodia are needle-shaped, actin-driven cell protrusions with characteristic features that are well conserved amongst vertebrates and invertebrates. However, existing models of filopodia formation are still incomplete and controversial, pieced together from a wide range of different organisms and cell types. Therefore, we used embryonic Drosophila primary neurons as one consistent cellular model to study filopodia regulation. Our data for loss-of-function of capping proteins, enabled, different Arp2/3 complex components, the formin DAAM and profilin reveal characteristic changes in filopodia number and length, providing a promising starting point to study their functional relationships in the cellular context. Furthermore, the results are consistent with effects reported for the respective vertebrate homologues, demonstrating the conserved nature of our Drosophila model system. Using combinatorial genetics, we demonstrate that different classes of nucleators cooperate in filopodia formation. In the absence of Arp2/3 or DAAM filopodia numbers are reduced, in their combined absence filopodia are eliminated, and in genetic assays they display strong functional interactions with regard to filopodia formation. The two nucleators also genetically interact with enabled, but not with profilin. In contrast, enabled shows strong genetic interaction with profilin, although loss of profilin alone does not affect filopodia numbers. Our genetic data support a model in which Arp2/3 and DAAM cooperate in a common mechanism of filopodia formation that essentially depends on enabled, and is regulated through profilin activity at different steps.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Drosophila growth cones: a genetically tractable platform for the analysis of axonal growth dynamics.

The formation of neuronal networks, during development and regeneration, requires outgrowth of axons along reproducible paths toward their appropriate postsynaptic target cells. Axonal extension occurs at growth cones (GCs) at the tips of axons. GC advance and navigation requires the activity of their cytoskeletal networks, comprising filamentous actin (F-actin) in lamellipodia and filopodia as...

متن کامل

Critical Role of Ena/VASP Proteins for Filopodia Formation in Neurons and in Function Downstream of Netrin-1

Ena/VASP proteins play important roles in axon outgrowth and guidance. Ena/VASP activity regulates the assembly and geometry of actin networks within fibroblast lamellipodia. In growth cones, Ena/VASP proteins are concentrated at filopodia tips, yet their role in growth cone responses to guidance signals has not been established. We found that Ena/VASP proteins play a pivotal role in formation ...

متن کامل

Filopodial dynamics and growth cone stabilization in Drosophila visual circuit development

Filopodial dynamics are thought to control growth cone guidance, but the types and roles of growth cone dynamics underlying neural circuit assembly in a living brain are largely unknown. To address this issue, we have developed long-term, continuous, fast and high-resolution imaging of growth cone dynamics from axon growth to synapse formation in cultured Drosophila brains. Using R7 photorecept...

متن کامل

Transition from growth cone to functional motor nerve terminal in Drosophila embryos.

As a motor axon grows from the CNS to its target muscle, the terminal has the form of a flattened growth cone with a planar central region, lamellipodia, and filopodia. A mature terminal usually has a stereotyped shape that may be elongated with varicosities, as in several invertebrate species, or have short branches with boutons, as in mammals. We examined in Drosophila the developmental chang...

متن کامل

Spatial targeting of type II protein kinase A to filopodia mediates the regulation of growth cone guidance by cAMP

The second messenger cyclic adenosine monophosphate (cAMP) plays a pivotal role in axonal growth and guidance, but its downstream mechanisms remain elusive. In this study, we report that type II protein kinase A (PKA) is highly enriched in growth cone filopodia, and this spatial localization enables the coupling of cAMP signaling to its specific effectors to regulate guidance responses. Disrupt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011